第4章4「定数係数斉次線形微分方程式」第3回

解答

 C_1 , C_2 は任意定数とする

- 1. (1) $x = C_1 e^{-4t} + C_2 e^t$
 - (2) $x = C_1 e^{-6t} + C_2$
 - (3) $x = (C_1 + C_2 t)e^{2t}$
 - (4) $x = e^t (C_1 \cos \sqrt{3}t + C_2 \sin \sqrt{3}t)$
- **2.** (1) $x = -e^{-3t} + 2e^t$
 - (2) $x = e^t$
- **3.** (1) $x = e^{2t}(\cos t 2\sin t)$
 - $(2) x = e^{2t}(\cos t + \sin t)$

解説

 C_1 , C_2 は任意定数とする

- **1.** (1) 特性方程式より $\lambda^2 + 3\lambda 4 = 0$ これを解くと $\lambda = -4$, 1 よって, 求める一般解は $x = C_1 e^{-4t} + C_2 e^t$
 - (2) 特性方程式より $\lambda^2 + 6\lambda = 0$ これを解くと $\lambda = -6$, 0 よって, 求める一般解は $x = C_1 e^{-6t} + C_2$
 - (3) 特性方程式より $\lambda^2 4\lambda + 4 = 0$ これを解くと $\lambda = 2$ (2 重解) よって, 求める一般解は $x = (C_1 + C_2 t)e^{2t}$
 - (4) 特性方程式より $\lambda^2 2\lambda + 4 = 0$ これを解くと $\lambda = 1 \pm \sqrt{3}i$ よって, 求める一般解は $x = e^t(C_1 \cos \sqrt{3}t + C_2 \sin \sqrt{3}t)$
- **2.** (1) 特性方程式より $\lambda^2 + 2\lambda 3 = 0$ これを解くと $\lambda = -3$, 1 よって, 求める一般解は $x = C_1 e^{-3t} + C_2 e^t$ これより $\frac{dx}{dt} = -3C_1 e^{-3t} + C_2 e^t$ t = 0, $\frac{dx}{dt} = 5$ を代入すると $5 = -3C_1 + C_2$ 一般解 $x = C_1 e^{-3t} + C_2 e^t$ に t = 0, x = 1 を代入すると $1 = C_1 + C_2$ これらを連立して $C_1 = -1$, $C_2 = 2$ よって、求める解は $x = -e^{-3t} + 2e^t$
 - (2) (1) と同様に一般解 $x = C_1 e^{-3t} + C_2 e^t$ に t = 0, x = 1 および t = 1, x = e を代入する と $1 = C_1 + C_2$, $e = C_1 e^{-3} + C_2 e$ これらを連立して $C_1 = 0$, $C_2 = 1$ よって、求める解は $x = e^t$

- 3. (1) 特性方程式より $\lambda^2 4\lambda + 5 = 0$ これを解くと $\lambda = 2 \pm i$ よって, 求める一般解は $x = e^{2t}(C_1\cos t + C_2\sin t)$ $\frac{dx}{dt} = 2e^{2t}(C_1\cos t + C_2\sin t)$ $+ e^{2t}(-C_1\sin t + C_2\cos t)$ $t = 0, \frac{dx}{dt} = 0$ を代入すると $0 = 2C_1 + C_2$ $x = e^{2t}(C_1\cos t + C_2\sin t)$ に t = 0, x = 1 を 代入すると $1 = C_1$ より $C_2 = -2$ よって, 求める解は $x = e^{2t}(\cos t - 2\sin t)$
 - (2) (1) と同様に

 一般解 $x = e^{2t}(C_1 \cos t + C_2 \sin t)$ に t = 0, x = 1 および $t = \frac{\pi}{2}, x = e^{\pi}$ を代入すると $1 = C_1, e^{\pi} = e^{\pi}C_2$ より $C_1 = 1, C_2 = 1$ よって、求める解は $x = e^{2t}(\cos t + \sin t)$