第4章2「1階線形微分方程式」 第1回

解答

C は任意定数とする

- 1. (1) $x = t^4 + Ct$
 - (2) $x = (2t + C)e^t$
 - (3) $x = 1 + Ce^{-2t^2}$
 - (4) $x = (t^2 + C)e^{-t^3}$

解説

c, *C* は任意定数とする

1. (1)
$$\frac{dx}{dt} - \frac{x}{t} = 0$$
 の一般解を求める.
$$\frac{dx}{dt} = \frac{x}{t}$$
 より $\int \frac{1}{x} dx = \int \frac{1}{t} dt$
$$\log |x| = \log |t| + c$$

$$\log \frac{|x|}{|t|} = c$$
 より $C = \pm e^c$ とおくと、一般解は $x = Ct$ 定数 C を t の関数 $u = C(t)$ で置き換えると $x = ut$ 両辺を t で微分して $\frac{dx}{dt} = \frac{du}{dt} t + u$ 微分方程式に代入して $\frac{du}{dt} t + u - \frac{ut}{t} = 3t^3$ $\frac{du}{dt} t = 3t^3$ より $\frac{du}{dt} = 3t^2$
$$\int du = \int 3t^2 dt = t^3 + C$$
 $u = t^3 + C$ より $x = ut$ に代入すると 求める一般解は $x = t^4 + Ct$

(2)
$$\frac{dx}{dt} - x = 0$$
 の一般解を求める.
$$\frac{dx}{dt} = x \ \, \text{t} \, \int \frac{1}{x} dx = \int dt$$

$$\log |x| = t + c$$

$$C \ \, \mathcal{E} \pm e^c \ \, \mathcal{E} \ \,$$

(3)
$$\frac{dx}{dt} + 4tx = 0$$
 の一般解を求める. $\frac{dx}{dt} = -4tx$ より $\int \frac{1}{x} dx = \int (-4t) dt$ $\log |x| = -2t^2 + c$ C を $\pm e^c$ とおくと、一般解は $x = Ce^{-2t^2}$ 定数 C を t の関数 $u = C(t)$ で置き換えると $x = ue^{-2t^2}$ 両辺を t で微分して $\frac{dx}{dt} = \frac{du}{dt}e^{-2t^2} - 4tue^{-2t^2}$ 微分方程式に代入して $\frac{du}{dt}e^{-2t^2} - 4tue^{-2t^2} + 4t \cdot ue^{-2t^2} = 4t$ $\frac{du}{dt}e^{-2t^2} = 4t$ より $\frac{du}{dt} = 4te^{2t^2}$ $\int du = \int 4te^{2t^2} dt$ において $2t^2 = s$ とおくと $4tdt = ds$ より $\int du = \int 4te^{2t^2} dt = \int e^s ds = e^s + C$ $= e^{2t^2} + C$ $u = e^{2t^2} + C$ より $x = ue^{-2t^2}$ に代入すると 求める一般解は $x = (e^{2t^2} + C)e^{-2t^2} = 1 + Ce^{-2t^2}$ (4) $\frac{dx}{dt} + 3t^2x = 0$ の一般解を求める. $\frac{dx}{dt} = -3t^2x$ より $\int \frac{1}{x} dx = \int (-3t^2) dt$ $\log |x| = -t^3 + c$ C を $\pm e^c$ とおくと、一般解は $x = Ce^{-t^3}$ 定数 C を t の関数 $u = C(t)$ で置き換えると $x = ue^{-t^3}$ 両辺を t で微分して $\frac{dx}{dt} = \frac{du}{dt}e^{-t^3} - 3t^2ue^{-t^3}$ 微分方程式に代入して $\frac{du}{dt}e^{-t^3} - 3t^2ue^{-t^3}$ より $\frac{du}{dt}e^{-t^3} = 2te^{-t^3}$ より $\frac{du}{dt}e^{-t^3}$ また $\frac{du}{dt}e^{-t$

 $\int du = \int 2t dt = t^2 + C$

求める一般解は $x = (t^2 + C)e^{-t^3}$

 $u=t^2+C$ より $x=ue^{-t^3}$ に代入すると